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Previous long range acoustic experiments show that the Mid-Atlantic
Ridge', a major topographic feature rising to the deep sound channel axis,
can have a significant effect on SOFAR propagation. (R. J. Urick, J. Acoust.
Soc. Am. 35(9), 1413, 1963.) In order to quantify this effect, data have been
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JO. (Continued)
analyzed from a recent SOFAR experiment that deployed SUS charges during
several transits across the Ridge. The signals were received on a hydrophone
located near Bermuda, a distance of approximately 2500 km. These results are
compared with data from Atlantic seamounts of similar height and ridges in
other oceans. (K. M. Guthrie, J. Acoust. Soc. Am., 68(SI), S52(A), 1980.) The
enhancement or shadowing of SOFAR propagation is presented as a function of
source depth and frequency for various geometries.

F/Oi

I



TD 6555

The Effect of the Mid-Atlantic Ridge on

Long Range Sound Propagation

Introduction

Previous long range acoustic propagation experiments have shown that the
Mid-Atlantic Ridge, the major topographic feature in the Atlantic Ocean, can have
a significant blocking effect on SOFAR channel propagation. Here, we present an
analysis of data obtained from a long range acoustic propagation experiment where
the source tracks crossed back and forth over the Mid-Atlantic Ridge. Additionally,
these data are compared to those of similar experiments where the acoustic tracks
crossed seamounts and major bathymetric rises. Finally, some conclusions and
implications of the results are presented.
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Slide 1

Here we see data presented by Urick in 1963 for a propagation experiment
whose track crossed the Mid-Atlantic Ridge. The receiver was located at the sound
channel axis in the vicinity of Bermuda. Aircraft-deployed SUS charges were
detonated at the axis depth along a track extending from Bermuda, eastward,
passing over the Ridge at a range of 1800 nautical miles and continuing to a
maximum range of greater than 2500 nautical miles. In both octave bands shown,
there is an abrupt 20 to 30 dB decrease in adjusted received level after the Ridge is
encountered. This acoustic blockage is just one of the effects that the Ridge has on
propagation.

- Next slide, please. -
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Slide 2

In order to investigate the effects of the Ridge on propagation for near surface
sources, an acoustic experiment was conducted under summer conditions where the!

source ship covered the tracks shown here. Track I ran eastward from Bermuda
some 1400 nautical miles crossing the peak of the Mid-Atlantic Ridge. From there,
three more traverses of the Ridge were made over tracks II, I1, and IV. A major
bathymetric feature, the Rockaway Seamount, was encountered at about 600
nautical miles along track I. Explosive sources at both 18-meter and 154-meter
depths were detonated at equal intervals over all tracks. The resulting signals were
received on a hydrophone in the Bermuda area located close to the deep sound
channel axis at a depth of approximately 1400 meters.

- Next slide, please. -
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Here we see the sound velocity structure and bathymetry along track I. The

dashed line indicates the axis of the deep sound channel while the X's depict the

critical depth along the track. Depth excess generally exists over most of the track

except notably at the Rockaway Seamount at 600 nautical miles and as the rise of

the Mid-Atlantic Ridge is encountered. In this summertime experiment, no surface

duct existed.

--Next slide, please.
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TRACK I
PROPAGATION LOSS AND BATHYMETRY
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We present our data as propagation loss curves as a function of range with the
corresponding bathymetry. The first results are for the 18 meter sources at both 100
Hz and 200 Hz along track 1. For ease of presentation, the 200 Hz propagation loss
curve has a 5 dB offset of additional loss.

The first feature to note is the enhancement in received level of about 8 dB as
the Rockaway Seamount is encountered at about 600 nautical miles. This effect
appears to be about equal at both frequencies. Note also that the same value of
propagation loss had been observed at about 200 nautical miles or only one-third of
the way to the seamount.

The discontinuity in the loss curves after the seamount is due to a small gap in
the source track and not because of a shadowing effect.

Continuing in range from the Seamount, we start to see the effects of the

various peaks that comprise the ridge. It should be pointed out that the dashed lines
are extrapolations of normal propagation loss. The first prominence of the ridge to
have an enhancing effect is the peak at about 1200 nautical miles. Here the
enhancement is about 10 dB at 100 Hz while only about 5 dB at 200 Hz. As we
continue along in range, we see that the enhancement is indeed due to the individual
peaks (or on this scale the microstructure) of the ridge and not necessarily from the
general slope of the ridge. The maximum enhancement for 100 Hz is about 17 dB
and for 200 Hz is about 12 dB. Again, we should note that the loss experienced at
100 Hz at a range of 1300 nautical miles is the same as that experienced when the
source was at a range of only a little over 100 nautical miles. The start of the
shadowing effect as the peak of the ridge is passed is evident at the far right of the
figure.

- Next slide, please. -
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TRACK I
PROPAGATION LOSS AND BATHYMETRY
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Her,- we present the 25 Hz and 50 Hz data for the same track. The 50 Hz curve
is offset by an additional 5 dB of loss. Effects similar to the 100 Hz and 200 Hz data
are again noted at the Rockaway Seamount at 25 Hz and for both frequencies along
the rise to the Mid-Atlantic Ridge peak. The shadowing effect of the ridge peak can
also be seen.

- Next slide, please. -
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TRACK III
PROPAGATION LOSS AND BATHYMETRY
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This figure is representative of tracks II, III, and IV. The 100 Hz curve is offset
by 20 dB of additional loss for ease of presentation. It can be seen here that
although both frequencies exhibit the enhancement features, the particular peaks
that affect enhancements may be different for each frequency. The peak in
bathymetry at approximately 1050 nautical miles has an obvious enhancement
effect on the 100 Hz values, but not nearly so for the 25 Hz values.

Some peaks affect both frequencies while others just affect one frequency or

the other.

The maximum enhancements observed here are of the same magnitude as those
for track-I and correspond to the loss experienced when the source was at a range of
only about 100 nautical miles.

- Next slide, please. -
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TRACK I
PROPAGATION LOSS AND BATHYMETRY
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Here is a comparison of the 18-meter source losses with those for the 154-meter
source. The solid line depicts the losses for the 154-meter source while the dashed
lines depict the propagation loss for the 18-meter source. Both 200 Hz values are
offset by an additional 10 dB of loss. The deeper source, although experiencing less
loss over most of the track, due to a better coupling with the channel, does not
exhibit as much enhancement as the shallow source does due to the bathymetric

features, namely the Rockaway Seamount and the Mid-Atlantic Ridge. No effect
due to Rockaway Seamount is noted at all for the deeper source while at 200 Hz, the
shallow source even exhibits a significantly higher received level in the ridge
enhanced region.

- Next slide, please.
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PROPAGATION LOSS AND BATHYMETRY
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Having observed the significant received signal enhancements due to the
bathymetric features of the Mid-Atlantic Ridge, we sought to compare our results
with those obtained by others for different bathymetric features. On the left is the
enhancement observed for our data for the Mid-Atlantic Ridge while on the right is
that observed by Koenigs et al. (NUSC TD 6523, 12 August 1981) for a track that
crossed the corner seamounts. Again, it should be noted that the enhancements
observed are of about the same magnitude and also seem highly dependent on the
slopes of the individual peaks or microstructure of the bathymetry. Note the dif-
ferent ranges for each data set.

- Next slide, please. -
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PROPAGATION LOSS AND BATHYMETRY
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Slide 9

Here we see a side-by-side comparison of our data to Guthrie's (that was
presented at the 1977 ASA meeting at Penn State) from an experiment whose track
encountered the Fiji Rise, which is similar to the continental slope.

Our data are for 100 Hz and covers the range interval 1000 to 1400 nautical
miles while the Guthrie data are for 63 Hz and covers the range interval 250 to 750
nautical miles. Note on the Guthrie data that the loss experienced at about 650
nautical miles are 10 dB less than that experienced with the source at a range of 250
miles. Again, the agreement between data sets is excellent with enhancements in
both cases being about 20 dB.

- Next slide, please. -
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SUMMARY

* RIDGE CAN HAVE SIGNIFICANT ENHANCEMENT AS WELL AS
SHADOW EFFECTS

* SLOPE, HEIGHT OF RIDGE, DEPTH AND FREQUENCY OF SOURCE
ARE IMPORTANT FACTORS

9 GOOD AGREEMENT WITH SIMILAR MEASUREMENTS

* FACTOR IN AMBIENT NOISE

ri

Slide 10

In summary, you have seen that the Mid-Atlantic Ridge can have significant
enhancement on received signals as well as the well known shadow effect.

The degree of enhancement is a function of both the slope and height of the
bathymetric prominences that comprise the ridge as well as being a function of the
frequency and depth of the source. Bottom loss, of course, also plays an important
role.

We have shown good agreement with the degree of enhancement noted for the

Mid-Atlantic Ridge measurements compared to both seamount and continental rise
or shelf affected measurements.

And finally, as pointed out by Wagstaff in a recent journal article, the con-
tribution to the deep ocean ambient noise levels may be influenced more by ships
transiting over distant bathymetric prominences than by nearby shipping itself.

- Slide off, please. -
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